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Abstract

We present FCOSIS, a fully convolutional single-stage
anchor-free framework for instance segmentation. Our
model predicts a class-agnostic, high-resolution segmenta-
tion map, similar to semantic segmentation, while preserv-
ing the benefits of multi-scale pyramidal networks for a high
object detection performance. Instances are grouped in a
per-pixel fashion using both the bounding box regression
and a dense geometrical based embedding. Our design is
conceptually simple, single-stage, and combines the bene-
fits of object detection and semantic segmentation. On the
MSCOCO dataset, we outperform competing single-shot
approaches and are on par with more complex two-stage,
anchor-based methods. Code will be made available upon
acceptance.

1. Introduction
Instance segmentation is the task that jointly estimates

class labels and segmentation masks for all individual ob-
jects in an image. This is a fundamental goal in scene un-
derstanding and is an essential part in a variaty of different
applications.

Historically, most current instance segmentation meth-
ods are extensions of prominent bounding box detectors. In
recent years, the two most popular design principles for ob-
ject detection are based on, so called, two-stage or one-stage
approaches. Both design families rely on the usage of an-
chor boxes, which together with very deep backbone net-
works, have yielded state-of-the-art detectors while allow-
ing for reasonably fast inference speeds. Anchor boxes dis-
cretize the input image space into a finite number locations
with predefined locations, scales and aspect ratios. This dis-
cretization simplifies both training and testing, yet, has sev-
eral disadvantages:

(i) parameters for size, aspect ratios and number of an-
chor boxes are usually hand-tuned ad-hoc heuristics, (ii) the
detection of small objects with large shape variation is chal-
lenging, (iii) a large number of anchors is needed to yield
high recall, (iv) the design is fundamentally different to

Figure 1: FCOSIS works by dividing the task of instance
detection and segmentation at different feature levels. A
(l, t, r, b) bounding box is predicted at every cell of a pyra-
midal feature network, while semantic segments are pre-
dicted in a high-resolution map and grouped with a geomet-
rical based embedding, using a regression to the instance
center (yellow arrow). (best viewed in color)

methods for semantic segmentation, preventing principled
approaches to solve for whole scene parsing.

To circumvent these drawbacks, researchers have pro-
posed object detection models that avoid the usage of an-
chor boxes. For the task of bounding box prediction, new
anchor-free models, such as FCOS [21] and CenterNet [4],
have demonstrated to perform on par with anchor-based
methods, while being conceptually simpler and more intu-
itive. On small objects, they even show higher accuracy
than anchor-based approaches.

While recent anchor free models are already com-
petitieve in predicting bounding boxes, recent fully-
convolutional per-pixel attempts for instance segmentation
are fast but cannot compete with their anchor based coun-
terparts in terms of accuracy [1].

In this paper, we want to bridge this gap and present an
anchor-free single-shot model for instance mask prediction,
which is conceptually simple but able to yield high quality
mask predictions. Similar to popular anchor-based meth-
ods, such as, Mask R-CNN [8], our detector predicts both

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR
#8272

CVPR
#8272

CVPR 2019 Submission #8272. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

C2

C3

C4

C5

P2

P3

P4

P5

P6

P7
Detection Head

Segmentation
Head

Image

FPN featuresBackbone

256 x H2/4 x W2/4

256 x H2 x W2256 x H2/2 x W2/2

Upsample Upsample
1 x H2 x W2

Segmentation

i = 3, 4, 5, 6, 7

C x Hi x Wi C x Hi x Wi

80 x Hi x Wi

1 x Hi x Wi

Classi�cation

Segmentation

C x Hi x Wi C x Hi x Wi

4x Hi x Wi

Regression

Center regression   2 x Hi x Wi

+ centerness score   1 x Hi x Wi

Detection Head

Detection Head

Detection Head

Detection Head

+ λ

- μ

0

Parametrized attention maps

Rough segmentation Center regressionBounding box regression

(a)

(b)

(c)

Figure 2: Architecture of FCOSIS. C2 to C5 denote the feature maps of the ResNet backbone network, P3 to P7 are the FPN
feature maps.

bounding box locations, class predictions and instance seg-
mentations of target objects, yet in an anchor-free, single-
shot per-pixel manner. While our design extensions can
be integrated to any fully-convolutional per-pixel based ap-
proach, in this paper, we showcase our method based on
the popular FCOS object detector. Hence, we call our
method Fully-Convolutional One-Shot Instance Segmenta-
tion (FCOSIS).

Besides having the benefit of richer object localization
information through mask predictions, a second benefit of
our method is that it allows to alleviate one challenging
problem of anchor-free approaches, which is the correct
sub-selection of pixel locations that are allowed to vote to-
wards a specific target location. In FCOS, this task was
approached by introducing a “centerness” parameter, where
the distance to the bounding box center is regressed for ev-
ery pixel. In our work, we show how to even increase this
effect by leveraging the much richer information of segmen-
tation masks. Using this both during training and inference
leads to increased precision.

To this end, we introduce a fully-convolutional segmen-
tation head operating at lower levels of the network. The
separation of the segments into distinct target objects is
supported by two additional prediction modules: The first
module regresses centers of mass and provides a first signal
about individual pixel instance memberships. This infor-
mation is merged with a second module that provides low-
resolutional whole-image foreground-background masks.
Both cues are integrated into the fine-grained segmentation
head via a top-down pathway.

Our contribution is four-fold: 1. We show that making
use of mask information as a sole regularizer during training

time already improves the performance of standard FCOS.
2. We demonstrate that adding mask prediction heads (but
taking FCOS as a region proposal generator) in a two-stage
apporach not only enables better segmentation mAP and in-
ference speed compared to Mask R-CNN and RetinaMask
[5], but also improves FCOS’ bounding box mAP by a huge
margin. 3. We design a novel one-stage instance segmen-
tation architecture, based on two main strategies: First, we
predict class, bounding box, mass centers and segmenta-
tion at every feature level, using a group sampling proce-
dure. Second, we fuse these results via an attention map
with features from lower levels to get sharp, high resolu-
tion instance segmentation maps, in a bottom-up manner. 4.
We extensively test our novel design on publicly available
datasets and show that we outperform single-stage, dense
approaches and perform on-par with state-of-the-art two-
stage instance segmentation networks, while being much
simpler and more elegant.

2. Related Work

Anchor-based object detection. Most of the modern
object detection methods are anchor-based, meaning that
they rely on a dense grid of pre-defined bounding boxes
needing to be classified (as positive or negative) and re-
gressed (to refine their position and size). This design has
been popularized by detectors like Faster R-CNN [7], SSD
[16] or YOLOv2 [19] to name a few. While these meth-
ods perform at state-of-the-art level on well-studied datasets
like MSCOCO [14], they need a careful tuning of sev-
eral hyper-parameters, including anchor box shape, scale
and distribution, as well as the way they are selected as
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positive, negative or ignored during training. FreeAnchor
[29] has proposed a method to discard this last point while
remaining anchor-based, by a new loss function which as-
signs groundtruth detections to a certain anchor boxes. In
MetaAnchor [26] the authors have show how to learn the
all the anchor parameters during training.

Anchor-free object detection. YOLOv1 [18] is an ex-
ample of anchor-free object detector. Instead of relying on
anchor boxes, it directly regresses bounding boxes at points
close to the object center. However, its design suffers from
low recall since only the center pixel is used for bounding
box prediction, making it perform poorly compared to its
anchor-based follow up papers [19, 20].

Recently, several methods have appeared, discarding the
necessity of anchors while performing at state-of-the-art for
object detection. CornerNet [12] and CenterNet [4] regress
a pair of corners and corners plus center, respectively. In a
postprocessing step these anchor points are grouped using a
feature embedding in a post-processing. FCOS [21] uses a
much simpler design by densely predicting object bounding
boxes for every pixel, in a semantic segmentation style.

Recently, anchor free approaches have also been shown
beneficial for pedestrian detection [17] and even as an ex-
tension to anchor-based models [30].

Instance segmentation. Instance segmentation is the
task to jointly estimate pixel-level class labels and masks
for for every object instance in addition to the bounding box
and class. As mentioned, most state-of-the-art approaches
are extension of two-stage object detection approaches. For
example, Mask R-CNN [8] and RetinaMask [5] first gener-
ate and crop object proposals using a ROI-Align module to
repool feature maps and then separately estimate the mask,
class and refined bounding-box in a second step. Several
works ([5],) have shown that training an object detector to
predict masks in a multi-tasking way not only enables to in-
fer instance segmentations but also improves the bounding
box precision.

SSAP [6] proposes a single-shot proposal-free instance
segmentation method, based on the path-aggregation idea
from [15]. This is done by predicting an affinity window
for each grid cell which represents the probability that two
pixels belong to the same instance. However, the post-
processing step requires to solve a graph partitioning opti-
mization problem which is NP-hard. In contrast, we demon-
strate that a competitive one-stage instance segmentation
method can be built without post-processing by leveraging
the fully-convolutional nature of FCOS.

There have been late trends towards single-shot instance
segmentation, with speed as their main motivation. For in-
stance, recently YOLACT [1] was proposed, a method for
instance segmentation that builds on the YOLO object de-
tector [19]. The method, in parallel, generates a set of proto-
type masks and per-instance mask coefficients. Afterwards,

the prototypes are linearly combined using the coefficients
to yield mask predictions.

In [25], the authors show a method to infer points on
the instance contour in a fully-convolutional fashion, which
was extended by PolarMask [24] using the polar representa-
tion. Although these methods are fast, on MS COCO, they
produce a 6-7 mAP accuracy drop in mask prediction com-
pared to, e.g., Mask R-CNN.

In contrast, the recently proposed TensorMask [2], is
able to produce higher accurate masks, yet still lower than
Mask R-CNN. Additionally, as the method employs 4d ten-
sor representations over multiple scales, this comes at a sig-
nificantly increased complexity and memory cost. In this
paper, we tend to strike a balance between the previously
proposed methods. That is, we propose a method which is
fast and conventually simple, yet delivers results that are
on par or even higher than state-of-the-art two stage ap-
proaches!

Panoptic segmentation. Recently, a new field emerged
which combines both instance and semantic segmentation,
called Panoptic Segmentation [10]. Algorithms generate in-
stance masks for all ”foreground” objects and semantic seg-
ments for all ”background” classes. Current state-of-the-art
in this field is DeeperLab [27] and more recently Panoptic-
DeepLab [3]. Although these methods deliver great results
in panoptic quality most of them lack in sole instance seg-
mentation, compared to state-of-the-art instance segmenta-
tion networks. In our work, we use ideas from panoptic
segmentation in combination with anchor-free object detec-
tion heads to improve the mask prediction performance in a
single stage.

3. FCOSIS

In this following section, we describe our approach
of fully convolutional single-stage instance segmentation.
First, we provide a short review of the FCOS object detec-
tion algorithm in Section 3.1. We then introduce in Section
3.2 the architecture of our approach for instance segmenta-
tion and discuss our the design choices in detail. Finally,
in Section 3.3, we discuss how this architecture allows an
improved per-pixel bounding box prediction using mask-
regularization.

3.1. Fully Convolutional Object Detection

Although the ideas presented in our work are not bound
to any specific fully-convolutional single-shot object detec-
tor, we decide to build on the recently proposed FCOS ob-
ject detector [21], which we briefly review here.

Let Fi ∈ RH×W×F be the the output at layer i of the
feature pyramid network (FPN). For a given training image,
let {B(i)} be the set of groundtruth bounding-boxes, where
B

(i)
j = (x

(i)
0 , y

(i)
0 , x

(i)
1 , y

(i)
1 ) represent the left-top, right-
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bottom coordinates of the jth groundtruth object and c(i) ∈
{1, . . . , C} its corresponding class.

FCOS predicts bounding box locations in a per-pixel
fashion. To this end, the network outputs 3 vectors at ev-
ery location (x, y) (and in every FPN layer i): the vector
of classification scores c (of dimension C), the bounding
box regression t = (l, t, r, b) and an additional “centerness”
score s. The latter is used to down-weight pixel votes that
are far from a potential target center.

If location (x, y) falls into a groundtruth bounding box
B

(i)
j , it is considered as a positive sample, in which case

the targets are given by c∗, t∗ = (l∗, t∗, r∗, b∗) and s∗ =√
min(l∗,r∗)
max(l∗,r∗) ×

min(t∗,b∗)
max(t∗,b∗) ; otherwise it is a negative sample

and c∗ = 0. Note that unlike traditional anchor-based ob-
ject detection frameworks, the bounding box regressions do
not designate offsets in position and scale but instead rep-
resent the distance to the left, top, right and bottom borders
respectively, that is:

l∗ = x− x(i)0 , t∗ = y − y(i)0 ,

r∗ = x
(i)
1 − x, b∗ = y

(i)
1 − y.

(1)

FCOS is trained by backpropagating the following loss
function:

L({px,y} , {tx,y}) =
1

Npos

∑
x,y

Lcls(cx,y, c
∗
x,y)

+
α

Npos

∑
x,y

1c∗x,y>0Lreg(tx,y, t
∗
x,y)

+
β

Npos

∑
x,y

1c∗x,y>0Lcenterness(s, s
∗),

(2)

where the focal loss [22] is used as classification loss
Lcls, the IoU loss Lreg penalizes the bounding box regres-
sion, similar to UnitBox [28], and the binary cross entropy
loss is used for Lcenterness. Npos denotes the number of posi-
tive samples and the variables α and β are used as trade-off
parameters, which are set to 1 in all experiments.

3.2. One-Stage Instance Segmentation

In this section, we present the design of our Fully-
Convolutional One-Shot Instance Segmentation network
(FCOSIS) based on the pixel-wise object detection network
FCOS. The full architectural overview is shown in Figure
2. In the following paragraph, we explain all the network
components in detail.

3.2.1 Network Architecture

We start by noticing that object detection and pixel-wise
segmentation have asymmetrical information level needs.

Indeed, standard bounding box prediction heads of one-
shot object detectors operate over pyramid levels, i.e., typi-
cally P3-P7, where larger objects are detected at higher lev-
els and vice versa; as a consequence, objects detected at
different levels have a similar relative size with respect to
the resolution of their corresponding feature map. A nat-
ural extension towards segmentation prediction would be
to classify pixels as foreground or background at the same
level as for the detection task; however, doing this doesn’t
enable the creation of high-quality detailed segmentation
masks from pixel-wise predictions, while using high res-
olution low-level feature maps would be a better choice. In
turn, naively adding more low-level pyramid levels for the
detection task has shown to lead to higher complexity and
reduced accuracy for bounding box detection.

Hence, our design strategy proposes to exploit only the
pyramid levels that have empirically shown to be a good
choice for the object detection and pixel-level segmentation
tasks, i.e., P3-P7 and P2-P4 respectively. The modules re-
sponsible for those two tasks are shown in Figure 2b and
Figure 2c.

Detection Head We use the same model architecture at
configuration as FCOS [21], i.e. four 3x3 conv layers of
256 channels with ReLU and GroupNorm, followed by a
classification, regression and centerness prediction head.

Segmentation Head An overview of the segmentation
head can be seen in Figure 2c. The module consumes the
feature layers P2-P4 and yields a segmentation prediction
having the same size as the P2 feature map, i.e., W/4 ×
H/4 × C, with C being the number of object classes. The
module uses three 3x3 conv layers with 256 channels and
is followed by upsampling and summation operations.

In the context of instance segmentation though, the two
modules described above need to be linked in order to lo-
calize and assign individual instance segments. We pro-
pose to do this by feeding the segmentation network with
a parametrized attention map that can be seen as a instance
prior or a top-down connection path for information fusion
at lower network level. The FPN feature maps are then mul-
tiplied with the same attention map (bilinearly interpolated
to match the corresponding resolution) and passed as input
to the segmentation network. In the following, we discuss
the construction of this attention map.

Attention module While the segmentation head above
can output fine-grained segmentation masks, it lacks in
global context to disambiguate neighboring objects and also
needs further guidance to regions where higher accuracy is
needed. To this end, we support the learning using a simple
attention map, which is generated in upper layers and con-
sists of three parameters: in particular, we set a zero value
to pixels that are outside of the bounding box as they do
not contain objects, and introduce two additional parame-
ters that aim to help the network in separating objects close

4
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to each other: +λ and −µ. λ indicates foreground pixels
on the object while −µ marks pixels which belong to the
background or distractor instances. λ and µ are initialized
to 1 but are set as parameters that the network can learn.

In order to reliably predict these parameters in a fully-
convolutional matter, we first generate coarse segmenta-
tions and a center of mass regression map. The segmenta-
tions are not good enough to produce high-quality segments
but represent initial cues. The center regression module acts
as an additional regularizer. All parameters are learned end-
to-end during training.

The attention map generation clearer is constructed very
simply from the bbox, coarse segm and center regression
maps. For every segmentation forward pass (with GT or de-
tected objects {1 . . . n}), each location (x, y) gets assigned
to a unique instance ID 1 ≤ j ≤ n whose center (x

(j)
C , y

(j)
C )

is closest to the regressed center (x + rx, y + ry). The
grouped pixels are then multiplied with the coarse segmen-
tation map and constrained to their bounding-box bound-
aries.

Centerness of mass regression In the pixel-wise object
detection branch we can already regress if the pixel belongs
to the foreground or the background. In order to help the
network to group foreground pixels belonging to the same
object we propose to use center regression. The goal of this
module is to regress a vector pointing to the object center
in addition to the FCOS centerness score. By grouping all
vectors the belong to the same center we can separate pixels
from neighboring objects even if they belong to the same
class.

Figure 3: Center of mass regression map. Foreground pixels
of masks are activated to regress the center of mass of the
object they belong to. Colors are encoding the angle of the
vector for a better visualization.

Formally, let (x
(j)
C , y

(j)
C ) be the center of mass of the the

jth groundtruth object. Then, at each location (x, y), the
center regression is defined as (rx, ry) = (x

(j)
C −x, y

(j)
C −y).

The center regression is learned using a SmoothL1 loss and

activates only for positive samples, that is, pixels belonging
to foreground objects.

Efficient Attention Map Propagation In order to in-
crease both training and inference speed, we can leverage
the fully convolutional nature of FCOSIS’ segmentation
branch in order to predict multiple instance segments in a
single forward pass. A straight forward way to propagate
the attention maps to the segmentation head is to create one
map for each object; however, with a large number of de-
tections, this becomes computationally expensive. In or-
der to be more efficient in this step, we propose to com-
bine several objects in one map by only requiring that the
instances, to predict jointly, do not overlap. Formally, let
B(j) = (x

(j)
0 , y

(j)
0 , x

(j)
1 , y

(j)
1 ) be the bounding box of the jth

instance, j ∈ {1, . . . , N} and let oj,j′ = IoU(B(j), B(j′))
designate the overlap between bounding boxes j and j′.
By noting G = (V,E) the associated graph, where V =
{1, . . . , N} and E = {(i, j) | oi,j > 0}, finding the min-
imum number of forward passes such that no bounding
box overlaps reduces to determining the chromatic number
χ(G) of G, which is defined as the smallest integer q satis-
fying:

∃x = (xv ∈ {1, . . . , q} , v ∈ V ) |
∀v, w ∈ V, (v,W ) ∈ E =⇒ xv 6= xw,

(3)

as shown in Figure 4
In practice, since the graph-coloring problem is NP-hard,

we use the Largest-First (LF) heuristic, as described in [11]
and [23].

1

2

3
5

4
6

7

8

Figure 4: Graph coloring problem. Given a set of overlap-
ping objects, find the minimal set of masks without bound-
ing box overlaps.

3.2.2 Training

For a given input image, let S ∈ RH×W be the class-
agnostic segmentation map prediction of the mask module
and let B(j) = (x

(j)
0 , y

(j)
0 , x

(j)
1 , y

(j)
1 ) and S(j) ∈ RH×W be

respectively the groundtruth bounding box and binary seg-
mentation map of the jth object. Since the ultimate goal of
the predicted semantic segmentation map is only to obtain
instance segments, we impose, for every object j, a Binary
Cross Entropy loss at the cropped area corresponding to its
groundtruth bounding box. Formally, this means that we
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minimize:

L(j)
segm = BCE(S

y
(j)
0 :y

(j)
1 ,x

(j)
0 :x

(j)
1
, S

(j)

y
(j)
0 :y

(j)
1 ,x

(j)
0 :x

(j)
1

)

Since the groundtruth bounding box tightly delineates
the object, we observe a class imbalance between fore-
ground (1) and background (0) pixels using this method. To
counter this issue, we add a padding of p pixels on the left-
right and top-bottom of the bounding box so that the ratio
is approximately 0.5. Let r =

∑
foreground pixels

w∗h be the ratio
of foreground pixels in a bounding box of size h×w. Then
we want the new ratio to verify r′ = 0.5 =

∑
foreground pixels

(w+2p)×(h+2p) .
By solving this quadratic equation in p we get the optimal
padding, that we can round up to the nearest integer.

3.3. Mask regularization

Figure 5: Left: Illustration of a highly ambiguous image. Since
all objects have a similar scale, they are predicted in from the same
FPN level. For instance, the groundtruth at point P is assigned to
the red bounding box since its area is smaller. while it would make
more sense to attribute the groundtruth to the foreground object,
e.g. the orange bounding box in this case. Right: Bounding box
center (red) can be outside the object’s real center. Center of mass
(green) captures more information.

In [21], it is shown that FCOS’ performance drops by
almost 3 mAP if bounding box centerness prediction is not
used as regularizer. In turn, it is also shown that the perfor-
mance can be further significantly increased if the perfect
ground-truth centerness is used. This insight suggests that
the way positive samples are selected at training time and
predictions are weighted during inference is suboptimal.

In particular, relying on bounding box centers can ren-
der ambiguity in cases where two target objects are close to
each other (Fig 5,left) or during the detection of deformable
objects (Fig 5,right), where the bounding box center is not
guaranteed to be inside the object. For both cases, switching
from bounding box center to more informative regulariza-
tions would be the preferable choice.

To this end, we propose – for ambiguous samples – to
take advantage of the instance mask information at training
time in order to favor objects in the foreground instead of

objects of smallest area. Using masks additionally allows
us to predict objects’ center of mass, which is more accurate
for deformable objects.

Specifically, if a location (x, y) is ambiguous at fea-
ture level i, we choose the object whose segmentation label
s
(i)
(x,y) is the highest. Note that since a feature map Fi (with

stride s) has a downscaled resolution compared to the input
image I , its segmentation label is not necessarily binary.
Formally, if we denote S(I) ∈ RH×W =

(
s
(I)
i,j

)
0≤i≤H−1
0≤j≤W−1

the segmentation map of a given object in the input image,
the segmentation label s(i)x,y at location (x, y) in feature level
i is given by:

s(i)x,y =
1

s2

∑
0≤i,j≤s−1

s
(I)
xs+i,ys+j

This segmentation information is beneficial in two ways:

1. The ambiguity problem is largely alleviated. Although,
the COCO [14] dataset contains segmentation masks
that overlap, each pixel is almost always mapped to a
unique instance.

2. Lreg can be better regularized. Instead of using the cen-
terness scores as training weights, we can use a com-
bination of centerness and segmentation. Specifically,
we use:

w = α · centerness +β · s(i)x,y + γ ·
√

centerness× s(i)x,y

with α+ β + γ = 1. Intuitively, using the mask infor-
mation enables to better handle cases of elongated ob-
jects whose foreground pixels are not necessarily con-
centrated in the center of their bounding box, as illus-
trated in figure 6.

(a) (b) (c)

Figure 6: Regularization maps using (a) α = 1, β, γ = 0,
(b) β = 1, α, γ = 0 and (c) α, β, γ = 1/3.

The above regularization approach can be applied if
mask information is available during both training and in-
ference, which is supported by FCOSIS.

4. Experiments
In an extensive evaluation we report the results on the

large scale MSCOCO object detection and instance seg-
mentation benchmark [14]. We use the 115k images from
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Method Backbone APbb APbb
50 APbb

75 APS
75 APM

75 APL
75

Two stage detectors
Mask R-CNN [8] ResNet-50-FPN 38.2 60.3 41.37 20.1 41.1 50.2
RetinaMask [5] ResNet-50-FPN 39.4 58.6 42.3 21.9 42.0 51.0
One-stage detectors
YOLOv3-608 [20] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9
CornerNet [12] Hourglass-52 37.8 53.7 40.1 17.0 39.0 50.5
FCOS [21] ResNet-50-FPN 37.1 55.9 39.8 21.3 41.0 47.8
FCOSreg (ours) ResNet-50-FPN 37.5 56.4 40.3 21.4 42.1 50.0
MaskFCOS (ours) ResNet-50-FPN 39.8 57.9 43.2 23.2 43.8 52.5
FCOSIS (ours) ResNet-50-FPN 38.2 56.2 42.1 22.7 42.3 51.2

Table 1: Object detection Performance. Comparision with state-of-the-art methods on COCO test-dev. FCOSreg
deignates FCOS with mask regularization.

Method Backbone AP AP50 AP75 APS
75 APM

75 APL
75

Two stage detectors
Mask R-CNN [8] ResNet-50-FPN 34.9 57.2 36.9 15.4 36.6 50.8
RetinaMask [5] ResNet-50-FPN 34.9 55.7 37.1 15.1 36.7 50.4
One-stage detectors
PolarMask [24] ResNet-50-FPN 29.1 49.5 29.7 12.6 31.8 42.3
YOLACT [1] ResNet-50-FPN 28.2 46.6 29.2 9.2 29.3 44.8
TensorMask [2]* ResNet-50-3xFPN 35.5 57.3 37.4 16.6 37.0 49.1
MaskFCOS (ours) ResNet-50-FPN 34.8 55.3 37.4 15.7 37.9 51.9
FCOSIS (ours) ResNet-50-FPN 32.4 51.5 34.3 12.9 35.2 49.2

Table 2: Mask Performance. Comparison with state-of-the-art methods on COCO test-dev. Methods marked with ’*’
use 3x more epochs to train.

the trainval35k split for training and the 5k images
from the minicval split in our ablation studies. The final
results are calculated on the larger test-dev split (20k
images) by uploading them to the evaluation server. We re-
port AP as average precision of instance segmentation and
APBB for the bounding box precision.

Training details. FCOSIS is trained using the standard
settings from the original FCOS paper. Images are resized
to make the shorter side equal to 800 pixels while limiting
the longer side to 1333 pixels. Unless specified, we use
ResNet-50 [9] as backbone network in an FPN setting. The
complete network is trained with Stochastic Gradient De-
scend (SGD) for 24 epochs with initial learning rate being
0.01 and a minibatch size of 16. The learning rate is reduced
by a factor of 10 at epoch 14 and 21, with weight decay and
momentum set to 0.0001 and 0.9, respectively.

Mask Prediction Head Here we show how one can ex-
tend FCOS [21] to predict instance masks using mask pre-
diction heads (MaskFCOS). We select the top N scoring
bounding box predictions and use them as mask propos-
als. According to the equation 4 introduced in [13], we then

sample features from a given feature map Pk (P3, P4 or P5),
where k is given by:

k =
⌊
k0 + log2

√
wh/224

⌋
(4)

Here, k0 = 4 and w, h are respectively the width and
height of the bounding box prediction. In practice, this
means that detections of size smaller than 2242 are assigned
to P3 and detections of size larger than 4482 are assigned to
P5, P4 being used for the sizes in-between.

Similarly to [8], the ROI-Align operation outputs a
14x14 resolution feature map which is fed into four con-
secutive 3x3 convolutional layers and one 2x2 transposed
convolutional layer. A final 1x1 convolutional layer then
predicts the masks from the upsampled 28x28 feature map.

4.1. Comparison with state-of-the-art

We compare our model to state-of-the-art in the areas
of bounding-box object detection and instance segmenta-
tion on MSCOCO test-dev, shown in Table 1 and Table
2, respectively. To make a fair comparison, we included
both one-shot and two-shot approaches and tried to report
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Figure 7: Sample instance segments of MaskFCOS (top) and FCOSIS (bottom) on MSCOCO images with ResNet-50-FPN.
Notice how FCOSIS consistently produces sharper segments. The last three examples show failure cases where either a part
of the instance is not segmented (the legs of the giraffe and the hand of the football player) or an object is not detected at all
(the cat).

numbers with comparable backbone networks to ResNet-
50-FPN.

4.2. Ablation study

In this section, we study the effects of different modules
in our architecture and report quantitative results in Tab. 3.

Top down connection Following the segmentation
branch architecture from DeeperLab [27], we build and
evaluate a simple baseline without top-down connection:
the segmentation output is of size C × H × W , where
C is the number of classes, and the segmentation branch
contains an ASSP (Atrous Spatial Pyramid Pooling)
module for an increased receptive field of the segmentation
network. The segment outputs are then just cropped from
this map using the predicted bounding box and class.

As shown in table 3a, segmentation performance drops
by over 3mAP, suggesting that distinguishing individual
instances inside of bounding boxes (which is done via the
instance-specific top-down connection) is crucial.

Parametrized attention map When setting the back-
ground / distractor pixels to zero in the parametrized
attention (meaning that µ is set to 0 and is non-learnable),
segmentation performance drops by 1.5 mAP (table 3b),
which indicates that the negative features help to distin-
guish neighboring objects from one another.

Segmentation & Center of mass regression In the
parametrized attention map, we evaluate the impact of the
rough segmentation and center of mass regression. When
using the bounding box information only, i.e. the entire

8
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bounding box is filled with λ, segmentation performance
is degraded slightly, meaning the high-level instance infor-
mation captured by the detection branch can be leveraged
in the lower-level segmentation branch.

Method AP AP50 AP75 APS
75 APM

75 APL
75

baseline 28.9 48.9 29.6 10.6 30.8 43.5
top-down 32.4 51.5 34.3 12.9 35.2 49.2

∆ +3.5 +2.6 +4.7 +2.3 +4.4 +5.7

(a) Top-down connection: cropping segments from a generic se-
mantic segmentation map output vs using instance-specific infor-
mation via the top-down connection of FCOSIS.

Method AP AP50 AP75 APS
75 APM

75 APL
75

λ, µ := 0 30.9 50.8 32.0 12.6 33.1 46.2
λ, µ 32.4 51.5 34.3 12.9 35.2 49.2
∆ +1.5 +0.7 +2.3 +0.3 +2.1 +3.0

(b) Attention map parameters: setting µ to 0 vs. setting it as a
learnable parameter.

Method AP AP50 AP75 APS
75 APM

75 APL
75

bbox only 31.5 50.9 32.9 12.7 34.5 47.4
segm. 32.4 51.5 34.3 12.9 35.2 49.2

∆ +0.9 +0.6 +1.4 +0.2 +0.7 +1.8

(c) Segmentation & Center of mass regression: using only the
bounding box information in the parametrized attention map vs
taking additionally the rough segmentation and center regression
into account.

Table 3: Ablations of FCOSIS on COCO val2017 us-
ing ResNet-50-FPN and evaluating the segmentation per-
formance.

4.3. Qualitative evaluation

We display the segmentation masks of our method FCO-
SIS and two other one-stage instance segmentation methods
in Figure 8. Since YOLACT [1] and FCOSIS are based on
a segmentation map output, we observe sharp segments for
both methods, in comparison to PolarMask [24]. However,
FCOSIS has a stronger object detection performance, re-
sulting in instances being better detected.

At the time of writing, the implementation of Tensor-
Mask [2] is not available and therefore cannot be compared
here.

5. Conclusion
In this paper, we have introduced FCOSIS, a novel

method for fully convolutional one-stage instance segmen-

tation. In contrast to previous methods, we keep the sim-
plicity of current one-shot approaches while being com-
petitive to more complex state-of-the-art two-stage anchor
based methods.

To allow for both dense per-pixel high-resolution seg-
mentation maps and accurate bounding box predictions,
FCOSIS links lower and higher level cues using a parame-
terized attention map. The map, in turn, is created by fusing
coarse segmentations, bounding box regressions and center
of mass predictions.

In contrast to anchor based approaches, for FCOSIS less
parameters need to be optimized and the design is closer
to typical semantic segmentation approaches. This renders
an obvious extension of our method to the task of panoptic
segmentation, which we keep as future work.
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Figure 8: Visual comparison of our method FCOSIS (top) and two other one-stage instance segmentation methods on COCO
val2017: YOLACT [1] (middle) and PolarMask [24] (bottom) with ResNet-50-FPN. Notice how PolarMask produces
very rough segmentations compared to the two other methods and how FCOSIS consistently detects instances better than
YOLACT.
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