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Introduction

Object tracking: track an object in any sequence, given only its first
frame bounding box annotation.

Figure 1: SiamRPN++ tracker on the MountainBike sequence of OTB-2015.
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Tracking is hard!

To be successful, the tracker has to be:

Class-agnostic

Robust to severe appearance changes (lighting conditions, rotations,
changes in aspect ratio, motion blur)

Able to handle temporary occlusions

Robust to semantic distractors
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A challenging benchmark dataset: OTB-2015

Distractors: Rotations:

Scaling:
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Variants of the tracking problem

People tracking

Not class-agnostic.

Tracking by detection
paradigm.

Benchmarked on the
MOTChallenge
[Milan et al., 2016].

Semi-supervised video segmentation

No ’causal’ requirement (all the frames
are provided from the beginning).

No real-time requirement.

Benchmarked on the DAVIS Challenge
[Perazzi et al., 2016].

Very short sequences (2-4 seconds,
mean number of frames per sequence:
69.7).
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Single Shot MultiBox Detector (SSD)

Figure 2: SSD architecture [Liu et al., 2016]
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The default boxes

Figure 3: Default boxes as used in
SSD. For every feature map (here
8× 8) and at every feature map
location center, we define 6 default
boxes.

At the kth feature map, we define
the scale values sk and s ′k .
For every aspect ratio value
a ∈ {1, 2, 3, 12 ,

1
3}, the default

box has width and height:{
w = sk

√
a

h = sk
a

so that its area is w × h = s2k .

Finally, we add the 1:1 default
box of scale s ′k (the green one on
figure 3).
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Siamese Fully Convolutional network (SiamFC)

Figure 4: Siamese architecture [Bertinetto et al., 2016]
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Siamese Region Proposal Network (SiamRPN)

Figure 5: SiamRPN architecture [Li et al., 2018b]
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Accurate Tracking by Overlap Maximization (ATOM)

Figure 6: ATOM architecture [Danelljan et al., 2018]
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SiamRPN++

Figure 7: SiamRPN++ architecture [Li et al., 2018a]

(Submitted to arXiv.org on 31 Dec 2018!)
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State-of-the-art on OTB-2015

Figure 8: Comparison of the success and precision plots with the state-of-the-art
trackers on the OTB-2015 dataset.
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State-of-the-art on VOT2018

DLSTpp DaSiamRPN SASiamR CPT DeepSTRCF DRT RCO UPDT SiamRPN MFT LADCF ATOM SiamRPN++

EAO 0.325 0.326 0.337 0.339 0.345 0.356 0.376 0.378 0.383 0.385 0.389 0.401 0.414

Acc. 0.543 0.569 0.566 0.506 0.523 0.519 0.507 0.536 0.586 0.505 0.503 0.590 0.600

Robust. 0.224 0.337 0.258 0.239 0.215 0.201 0.155 0.184 0.276 0.140 0.159 0.204 0.234

Table 1: Comparison with the state-of-the-art in terms of expected average
overlap (EAO), accuracy and robustness (failure rate) on the VOT2018
benchmark.
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SiamRPN++
[demo]
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Training datasets

TrackingNet [Müller et al., 2018]: 30,132 sequences (6 chunks / 12
were downloaded), 14,431,266 frames, 27 categories.

ILSVRC-2015 video dataset [Russakovsky et al., 2015]: 3,862 / 555
train / validation videos, 1.3 million frames, 30 categories.

COCO dataset [Lin et al., 2014]: 328,000 images, 2.5 million labeled
instances, 91 categories.
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COCO data augmentation

Figure 9: Some synthetic pairs including semantic distractors generated from the
COCO dataset.
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Image cropping

Figure 10: Image cropping: Given a bounding box (w , h) and a context amount
(here 0.5), we compute the context c = context amount× (w + h)/2. We then
have W = w + 2c ,H = h + 2c . The area to crop is the square of size
s =
√
W × H. Finally we resize the obtained region to 127 pixels.
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The loss

Similarly to SSD, we have the following variables:
I D default boxes di (i ∈ {0, . . . ,D − 1}): di = (dcx

i , d
cy
i , d

w
i , d

h
i )

I One ground-truth bounding-box: g = (g cx , g cy , gw , gh)

For every default box index i , we further define:
I The normalized ground-truth bounding-box: ĝi:

ĝi
cx = (g cx − dcx

i )/dw
i , ĝi

cy = (g cy − dcy
i )/dh

i

ĝi
w = log(

gw

dw
i

), ĝi
h = log(

gh

dh
i

)

I The network output: confidence score ci ∈ [0, 1]
and offset location prediction li = (lcx , lcy , lw , lh)

I The matching indicator:

xi =

{
1 if IoU(di , g) ≥ δhigh (positive match)
0 if IoU(di , g) ≤ δlow (negative match)
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The loss

We finally define the following loss:

L(x , c , l , g) =
1

N
(Lconf(x , c) + αLloc(x , l , g))

where
Lconf(x , c) = BinaryCrossEntropyLoss(c , x) and

Lloc(x , l , g) =
∑
i :xi=1

smoothL1(li − ĝi )

Because of the heavy class imbalance (more negative matches than
positives), we impose the ratio numnegatives/numpositives = 3.

Hard negative mining : we choose the negative matches as the ones
that contribute the most to the confidence loss.
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Tracking engineering

Similarly to SiamRPN [Li et al., 2018b], we use the following
strategies during tracking:

(a) Exemplar (b) Search (c) Corr. map (d) Cosine
window

(e) Corr. map

Figure 11: Visualization of applying a cosine window to the correlation map. The
confidence scores are then re-ranked in order to suppress large displacements.

Additionally, we penalize scale changes using the penalty

ek max( r
′
r
, r
r′ )max( s

′
s
, s
s′ ) where r and s represent the ratio and scale of the

current prediction. The values of the last frame are noted with a prime
symbol.
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Some implementation details

Developed using PyTorch 0.4
I easier to debug than Tensorflow
I more ”Pythonic”

Training visualization using TensorboardX
I training curves
I validation bounding boxes

Model configuration management using yacs
I readable .yaml config files
I command-line overridable parameters
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Remarks about SiamRPN

Using correlation maps seems to work well for the confidence score.

However, it is conceptually not clear why one could regress the
bounding box from it.

What’s more, the ground-truth bounding box from the exemplar
frame is used only to crop the image with the correct context
amount. In particular, the ground-truth aspect ratio is not used.
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Architectures: SiamConcatRPN
Inspired by Fast Video Object Segmentation by Reference-Guided Mask
Propagation [Oh et al., 2018], we build the following network:

Figure 12: SiamConcatRPN architecture
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Global convolution

Input

Output

Conv
1 x k

Conv
k x 1

Conv
1 x k

Conv
k x 1

Input

Output

Conv
k x k

Figure 13: k × k Global convolution compared to a standard k × k convolutional
layer.
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Mask guide

(a) Exemplar frame (b) Search frame

Figure 14: Illustration of how the ground-truth exemplar and search bounding
boxes are used in the SiamConcatRPN architecture to produce a binary mask.
The latter is processed by a convolutional layer and added to the first layer of the
ResNet network.
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Remarks about SiamConcatRPN

Relies only on convolutional layers to perform the matching.

Missing a similarity map?
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Architectures: SiamBroadcastRPN

Inspired by Class-Agnostic Counting [Lu et al., 2018], we build the
following network:

Figure 15: SiamBroadcastRPN architecture
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Results on OTB2015

Figure 16: Success and Precision plots of the constructed networks on OTB-2015.
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Results on OTB-2015

Figure 17: Validation results from the SiamConcatRPN model after training. Each
image pair corresponds to an exemplar and search frame. In the search image, the
bounding boxes correspond to: the ground-truth (in blue), the predicted box (in
red), the best default box (in yellow), the jittered guide (in green).
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Example sequences
[demo]

Alexandre Carlier (EPFL, Lausanne) Deep Learning for Object Tracking January 2019 38 / 45



Interactive demo

[demo]
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Conclusion

Training a state-of-the-art deep tracker is hard.

A very enriching experience (my first real-world application of the
classes I took last year, like CS-433 Machine Learning and EE-559
Deep Learning).

In the process, I learned a lot about object detection / object tracking
and writing deep learning code.
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Conclusion

There is still room for improvement!

(a) Bird1 (b) Basketball

Figure 18: Failures of SiamRPN++ on the OTB-2015 dataset.

Thanks for your attention!
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