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Introduction

@ Given aset X ={0,1,...N — 1} and a boolean function
X : X — {0,1}, we want to find a good element, i.e. an z € X
such that x(z) = 1.

@ If there is only one good element, a classical search algorithm has an
average complexity of S-N i x + =8

° Quantum approach given an equal superposition of states
W) = f SV o |z, if we measure |W), we get the correct |z) with
probability 1/N so, the average number of iterations is V.

e Grover’s algorithm [Grover, 1996]: we can transform |¥) in O(v N)
iterations so that performing a measurement on it gives the correct
|z) with high probability.
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Introduction

e Amplitude amplification [Brassard et al., 2002] is a generalization
of Grover's algorithm where the input is given as an arbitrary
superposition of elements of X: [¥) = A[0) =) ¢ a,|z) and
more than one element may be good elements.

o We can write:

Oy = D auln)+ D aglz)=[¥) + [ Tp)

z:x(z)=1 x:x(x)=0
with @ = (U1|¥;) < 1 is the probability that measuring |¥) produces

a good state.

@ The standard approach would thus need to iterate 1/a times to find a
good state. Amplitude amplification enables a quadratic speed-up

in O(1/y/a).
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The amplitude amplification operator
o [U) = A[0) = [W¥1) + Vo).
e Sy is the oracle function:

—|z) if x(z) =1
[} — { |z) otiferwise

2
S =15 1Y0) (Po| =1

e Sy =1-2]0)(0].
@ The amplitude amplification operator is:
Q= —ASpA'S,
= (A(210) (0] — I).A") x Sy

= (219) (%] - 1)(5— o) (o] ~ 1
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Geometrical representation of ()

e We can rewrite Q = UyUyg,, where Uy = 2 |¥) (¥U| — I and
Uy, = 125 Vo) (Yol — 1.

7= %)

U‘I/() ’\I]>

Figure 1: Operator () as the composition of two reflections.
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Matrix representation of ()

Q[V1) = UgUy, [V1) = —Uy [¥1) = (I = 2[¥) (¥]) |¥y)
= |U1) — 2a|P) = (1 —2a) V1) — 2a|Pp)
Q|Wo) = Uy [Vo) = (2]¥) (V] - I) Vo)
=2(1—a)[¥) = [¥o) = 2(1 — a) [¥1) + (1 — 2a) Vo)
Using sin?(6,) = a and cos?(0,) = 1 — a, we get:

Q@:(l—Q Nl_l_g\/T [Wo)

7 Vi—a
— (1 —2sin?(f, ))% — 2cos(fq )Sin(9a)\/’f—i—>a
— cos(29a)% — sin(260,) |IP 0_>a

Q\/‘II’_O__>G — sin(29a)% + cos(26,) |;110_>a
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Matrix representation of ()

@ Thus, @ is a rotation matrix in the basis {\/La W), \/% W)}

Q= ( cos 20, sin 29a>

—sin 260, cos?26,

o It has eigenvalues e2 ¢=21% \ith corresponding eigenvectors

3 (1) 3 (_11) noted |¥,) and |¥_).
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Quantum amplitude amplification

@ We can now write |¥) in the Q-eigenvector basis:

o) =

(e (W) — e )

and it follows that:
Qj |\I’> ( (2j4+1)i0, |\I/ > (2j—|—1)it9a |\I/_>)

@ By writing it back in the original {\/La [Wy), ﬁ |Wo)} basis:

QW) = sin((2] + 1))

Ta |W1) + cos((25 + 1)0,)

1
m |\I,0>
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Quantum amplitude amplification

o After m applications of the operator (), measuring the state |¥)
produces a good state with probability equal to sin?((2m + 1)6,).

D=

o x> sin?((2z + 1)6,) is maximized for x = 7 —

@ Thus the probability is maximized for m = |7/(46,)] (when the value
of a is known).

@ We can show that sin?((2m + 1)6,) > 1 — a.
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Complexity of the algorithm

o We use 2m + 1 applications of A and AT.

@ Since 0, ~ sin(f,) = /a, we get:

2m+1=2|7/(40,)] + 1
~2|r/(4Va)| +1

= 0(72)

@ And the success probability is 1 —a =~ 1.
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Visual demo

77 [91)
W) )
A ean '""/"7;'”
0.06976 0, — 7/45 \/EWO)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
_____________ Q'|¥)
0.20792 2 AR
3m/45 \/11_7 |Wo)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
Q*|¥)
0.34203
5 /45
= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
Q*|v)
0.46947
T /45 )
Vi-a |\IIO>

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
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Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
Q)
0.69466
117w /45
= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
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0.78801
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Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY

0.86603

= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY

0.92719

= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

Q| w)

197 /45

= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

VALY
QW)
0.99452 |

217 /45

= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm
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Visual demo

|W1)
Q' |W)

1
\/E
0.99939|

231 /45

= |¥o)

Figure 2: Visualization of the Quantum amplitude amplification algorithm

And indeed m = |7/46,] = 11.
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Visual demo

ALY
Q[ [¥)
0.0842
257 /45
=L
viza Yo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

And indeed m = |7/46,] = 11.
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Grover's algorithm
Example
W) = \/LN Zivz_ol |z) and x = 1,—9. Thena=1/N < 1,

o i -4

40, 4sin6, 4

and we get the state |0) with probability sin?((2m +1)6,) > 1 —a ~ 1.

v

)
~1[3Q7 )

a1
\/_ \/11_7‘\1}0>
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A special case

Example
|T) = \/%(|0> + 1)) |=) and x = 1,—0. We have a =1/2, 6, = %. Then,

m = 1 and sin?((2m + 1)6,) = sin? 3T = 1 = 4. Amplitude amplification
has no effect.

= [¥o)
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Outline
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Amplitude amplification when a is not known

@ When a is not known, we can first estimate it using quantum
amplitude estimation (see section 2) and then run the previous
algorithm by replacing the exact a by its estimate.

@ Another approach is to use QSearch. The intuition is the following:
for 0 ~ U]0,27], E [sin2 0] = % By choosing M sufficiently large,
M, is large and by picking j €y [1, M], j0, mod 27 follows a
good approximation of U[0, 27| (and so does (25 + 1)§, mod 27).

@ Then, the probability sin?((2j + 1)6,) that the measurement
produces a good state is in average %

@ Since we don't know 6,, we use an exponential search space for
M = ¢! by iteratively incrementing the value of [ for a constant c.
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The QSearch algorithm

Initialization: [ = 0.
Repeat: (while |z) is not a good state)

=1 j eu [L,d]

10) A W) Q’ A 12

Figure 3: The QSearch algorithm
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Outline
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Quantum de-randomization when « is known

The success probability of the Quantum Amplitude Amplification algorithm
is 1 — a. It turns out we can actually find a good solution with certainty.

o m — sin?((2m + 1)6,) is maximized for i = & — 3.
o If 7 is an integer, sin?((2m + 1)6,) = 1.

o Else we use m = [m| = |n/(46,)] iterations, which is slightly too
much.

The de-randomization approach is the following:

e Apply @ only |m] times. The resulting state is:

1

sin((2 [1i) + 1)6,) f|\111>+cos<<2 ] + 1))

|Wo)
o We further define Q'(¢, ¢) = —ASo(6).ATS, ()

where | S0(8) =10} (0 + 1) (1
Sx(9) = 52 [01) (U] + A= [To) (o

Alexandre Carlier (EPFL, Lausanne) Quantum Amplitude Amplification January 24, 2019 20 / 41



Quantum de-randomization when « is known

0 Q=Q(¢p=mp=m)
e By applying one final Q'(¢, ), we obtain:

[ y) + (ew(l — ) asin((2 ] + 1)6a) — (1 — e)a + )
1
e eos((2 ] + 16) ) [0

@ We can choose ¢ and ¢ so that the coefficient in front of [¥() = 0:

1— e
— cot((2|m] + 1)8,) = e°2+/a( ¢

— €'®)a + €'?)

— €% sin(20,)(2 27 1
=e Sln( a)( a +m)
=1—cos(20,)
io 1+e?
:ews1n(29a)(—cos(29a)+ l_ei¢) 1
——
=icot(¢/2)
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Outline

© Quantum amplitude estimation
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Quantum amplitude estimation

e Amplitude amplification: find x € X such that x(z) = 1.
@ Amplitude estimation: estimate a = (V1| ¥y).
o By a =sin?(6,), an estimate for a translates into an estimate for 6,.

@ The eigenvalues of Q are A = €2 and \_ = e=%"% so we can
instead estimate one of these eigenvalues.
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Quantum amplitude estimation

@ Let us define the operator

An(Q) = |7) [y) = 15) Q7 ly)
so that e.g: -
A (Q) 1) [W4) = €2%7 |) W)
@ We recall the quantum Fourier transform (for x € {0,...,M —1}):

M-1

1 )
Fuy |z — — e2miay/M

@ And we define (for a real 0 < w < 1):

M-1
’SM e?mwy |y
y:0
so that, for x € {0,..., M — 1}: |Sy(z/M)) = Fiy |x).
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Quantum circuit for amplitude estimation

(Fyf @ I)(Am(Q))(Far @ I) applied on the state [0) @ .A|0)

0 —

0) — Far — ¢ 15) Pyt )
o —L -
A0) Q’

(If M is a power of 2, we can replace the Quantum Fourier transforms by

Hadamard gates)
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Proof of correctness

The quantum circuit corresponds to the unitary transformation
(Fyf @ I)(Am(Q))(Far @ I) applied on the state [0) ® A|0), with

AJ0) = ——=(efa | W) — e P | W
10) \/5( W) v-))
By applying Fys ® I:

M-1
1 . ,
—— > )@ (e |Uy) —e e w )
VaM
After applying Ay (Q):
ei@

a —ifa
7 S0 (0o /7)) @ [V ) — NG 1S (1 = 0a/m)) @ | )
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Proof of correctness

o Finally, after FJ\? ® I, we have:

eifa -

\/§FM1 1Sa(0a/m)) @ [ 4) — 7 Fyt 1Sm(1 = a/m) @ [9-)

@ By tracing out the second register in the eigenvector basis
{|T.),|¥_)}, we obtain a 1-1 mixture of F;;'|Sy(6,/7)) and
Fyt [Sa (1 - 0a/7)).

@ By symmetry (since sin?(r) = sin?(w(1 — £ ))), we can assume the
measured |y) is the result of measuring Fiy,' [Sys(6,/7)).

e—iOa

e We thus have 6, = 7 is a good estimate of §, (see next slide).
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Bounding the error of the estimate (1/6)

ﬁFA}l [Shr(w)) is a good estimate of w. Indeed, if w = x/M for some
0<ax < M, then Fy/' |Sp(z/M)) = |z). Otherwise:

Theorem
Let X be the r.v. corresponding to the result of measuring Fy;" |Sar(w)).
Then: . ) .
Pl|—=X—-w <—]>—=0381
(-2 )3
Lemma

Letting A = | ;o — w| for some x € {0,..., M — 1}, we have:

sin?(M A7)
P[X = x] = D 2 2
M?sin®(Am)
v
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Bounding the error of the estimate (2/6)

Proof of the Lemma.

PIX = 2] = | (a] Fy' |Sm(w))
= |(Far )" S0 (w)) |2
= [ {Sm(x/M)|Sn(w)) I”

1 M-1 ) 1 M- ' 2 0
(g 20 ™My (o D0 T y)
y=0 =
2
A Ail o2mily| sin® (M Ar)
M? = M2 sin?(Ar)
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Bounding the error of the estimate (3/6)

Proof of the Theorem.

Pld(X/M,w) <1/M] =P[X = |[Mw]] + P[X = [Mw]]
sin?( M AT) sin?(M (< — A))

— M
- MZ2sin®(Am)  M? sin?((77 — A)m)
8
=
Since the minimum of this expression is reached at A = 1/(2M). O
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Bounding the error of the estimate (4/6)

A bounding error on 9~a translates into a bound on a.

Lemma
Let a = sin(0,) and a = sin®(6,) with 0 < 0,,0, < 5. Then:

00 — a| < e = |a — a| < 2ev/a(l —a) + €
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Bounding the error of the estimate (5/6)

A bounding error on HNQ translates into a bound on a.

Proof.

in?(0,) — sin®(0,) < sin®(0, + €) — sin(6,)

C
n(é
(

s;u
||

) =
o) cos(€) + sin(e) cos(8,))? — sin®(6,)
in2(0,) cos(€) + sin?(¢) cos?(8,) + 2 cos(6,) sin(8,) cos(e) sin(e)
— sin(6,)

= sin?(e)(cos?(0,) — sin?(0,)) + a(1 — a) sin’(e)

= a(1 — a)sin(2e) + (1 — 2a) sin?(e)

< 2ev/a(l —a) + €
Same for a — a. O

(si
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Bounding the error of the estimate (6/6)

Combining those results, the Amplitude Estimation algorithm outputs O
such that

- 1
_ <
’9(1/71- 9@/77’ — M

- T
<— 10, — 0, < —

.0, < -
with probability greater than 8/72.

Thus, by setting € = 17

_ a(l—a) w2
@ —al <=+ p
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Outline

9 Applications
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1. Application to counting
@ The amplitude estimation algorithm can be used for counting the

number of good elements t = [{z € X s.t. x(x) = 1}|.

@ By choosing A = Fy the Quantum Fourier Transform:

N-1
1 .
Fy : |$> § :627rzmy/M |y>
Y y=0

@ we have:

—
—_

A== = X e 3 W

y=0 y:x(y)=1 R Ny:x(y)=0 B

=[W1) =|¥o)

Thus, a = (¥1|¥;) = % andsot =a x N.
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2. Application to Monte Carlo sampling

@ Let X be a random variable taking values {0, ..., N} with probability
pi. We want to compute E[f(X)].
@ Using Monte Carlo sampling, with M evaluations of f, we get:

1§ ) ~ e £ S
M k=0 o \/M

@ Quantum approach: define
N-1

= Vili)
i=0

and the operator

F:|i)®]0) — i) @ (/1= f(i)]0) + /f() 1))

Then:
F|¥)®]0) = Zm— 0)\/Pi i) ® |0) + v/ f(3) /i i) ® [1)
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2. Application to Monte Carlo sampling

Using amplitude estimation, we estimate the probability to measure
1) in the last Qbit: @ = Y.~ ' p;f(i) = E[f(X)], and using M
evaluations of f:

ala —a) w

a—al <2m—"m—m-+ —

|a —al < 2w % + 2
with a convergence rate of (’)(ﬁ) to be compared to the classical
O(ﬁ> rate.
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3. Application to Quantum Risk Analysis

e Quantum Risk Analysis [Woerner and Egger, 2018] (IBM Research -
Zurich):
In quantitative finance, VaR (Value at Risk) and CVaR (Conditional
Value at Risk) are typically estimated using Monte Carlo sampling of
the relevant probability distribution.

e For a confidence value a € [0, 1], VaR, (X)) is the smallest [ such that
PIX <I]>(1-a).

e By defining fj(z) =1 if 1,<;, we thus want to approximate
P[X <] = E[fi(X)] of a random variable X taking values
{0,..., N} with probability p;.
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Conclusion

@ Quadratic speedup: this speedup is in fact the best we can attain
[Bennett et al., 1997].

o Even if amplitude amplification and estimation doesn't solve
NP-complete problems in polynomial time, we can apply it to more
than just search problems, such as Monte Carlo sampling with a
non-negligible speedup.
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