Quantum Amplitude Amplification and Estimation

 (COM-611) Quantum Information Theory and ComputationAlexandre Carlier

EPFL, Lausanne

January 24, 2019

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Introduction

- Given a set $X=\{0,1, \ldots N-1\}$ and a boolean function $\chi: X \longrightarrow\{0,1\}$, we want to find a good element, i.e. an $x \in X$ such that $\chi(x)=1$.
- If there is only one good element, a classical search algorithm has an average complexity of $\sum_{i=1}^{N} i \times \frac{1}{N}=\frac{N+1}{2}$.
- Quantum approach: given an equal superposition of states $|\Psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle$, if we measure $|\Psi\rangle$, we get the correct $|x\rangle$ with probability $1 / N$: so, the average number of iterations is N.
- Grover's algorithm [Grover, 1996]: we can transform $|\Psi\rangle$ in $\mathcal{O}(\sqrt{N})$ iterations so that performing a measurement on it gives the correct $|x\rangle$ with high probability.

Introduction

- Amplitude amplification [Brassard et al., 2002] is a generalization of Grover's algorithm where the input is given as an arbitrary superposition of elements of $X:|\Psi\rangle=\mathcal{A}|0\rangle=\sum_{x \in X} \alpha_{x}|x\rangle$ and more than one element may be good elements.
- We can write:

$$
|\Psi\rangle=\sum_{x: \chi(x)=1} \alpha_{x}|x\rangle+\sum_{x: \chi(x)=0} \alpha_{x}|x\rangle=\left|\Psi_{1}\right\rangle+\left|\Psi_{0}\right\rangle
$$

with $a=\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle \ll 1$ is the probability that measuring $|\Psi\rangle$ produces a good state.

- The standard approach would thus need to iterate $1 / a$ times to find a good state. Amplitude amplification enables a quadratic speed-up in $\mathcal{O}(1 / \sqrt{a})$.

Outline

(1) Quantum amplitude amplification

- The amplitude amplification operator
- Amplitude amplification when a is not known
- Quantum de-randomization
(2) Quantum amplitude estimation
(3) Applications

Outline

(1) Quantum amplitude amplification

- The amplitude amplification operator
- Amplitude amplification when a is not known
- Quantum de-randomization
(2) Quantum amplitude estimation
(3) Applications

The amplitude amplification operator

- $|\Psi\rangle=\mathcal{A}|0\rangle=\left|\Psi_{1}\right\rangle+\left|\Psi_{0}\right\rangle$.
- S_{χ} is the oracle function:

$$
\begin{gathered}
|x\rangle \longmapsto\left\{\begin{aligned}
-|x\rangle & \text { if } \chi(x)=1 \\
|x\rangle & \text { otherwise }
\end{aligned}\right. \\
\quad S_{\chi}=\frac{2}{1-a}\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|-I
\end{gathered}
$$

- $S_{0}=I-2|0\rangle\langle 0|$.
- The amplitude amplification operator is:

$$
\begin{aligned}
Q & =-\mathcal{A} S_{0} \mathcal{A}^{\dagger} S_{\chi} \\
& =\left(\mathcal{A}(2|0\rangle\langle 0|-I) \mathcal{A}^{\dagger}\right) \times S_{\chi} \\
& =(2|\Psi\rangle\langle\Psi|-I)\left(\frac{2}{1-a}\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|-I\right)
\end{aligned}
$$

Geometrical representation of Q

- We can rewrite $Q=U_{\Psi} U_{\Psi_{0}}$, where $U_{\Psi}=2|\Psi\rangle\langle\Psi|-I$ and $U_{\Psi_{0}}=\frac{2}{1-a}\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|-I$.

Figure 1: Operator Q as the composition of two reflections.

Matrix representation of Q

$$
\begin{aligned}
Q\left|\Psi_{1}\right\rangle & =U_{\Psi} U_{\Psi_{0}}\left|\Psi_{1}\right\rangle=-U_{\Psi}\left|\Psi_{1}\right\rangle=(I-2|\Psi\rangle\langle\Psi|)\left|\Psi_{1}\right\rangle \\
& =\left|\Psi_{1}\right\rangle-2 a|\Psi\rangle=(1-2 a)\left|\Psi_{1}\right\rangle-2 a\left|\Psi_{0}\right\rangle \\
Q\left|\Psi_{0}\right\rangle & =U_{\Psi}\left|\Psi_{0}\right\rangle=(2|\Psi\rangle\langle\Psi|-I)\left|\Psi_{0}\right\rangle \\
& =2(1-a)|\Psi\rangle-\left|\Psi_{0}\right\rangle=2(1-a)\left|\Psi_{1}\right\rangle+(1-2 a)\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Using $\sin ^{2}\left(\theta_{a}\right)=a$ and $\cos ^{2}\left(\theta_{a}\right)=1-a$, we get:

$$
\begin{aligned}
Q \frac{\left|\Psi_{1}\right\rangle}{\sqrt{a}} & =(1-2 a) \frac{\left|\Psi_{1}\right\rangle}{\sqrt{a}}-2 \sqrt{a(1-a)} \frac{\left|\Psi_{0}\right\rangle}{\sqrt{1-a}} \\
& =\left(1-2 \sin ^{2}\left(\theta_{a}\right)\right) \frac{\left|\Psi_{1}\right\rangle}{\sqrt{a}}-2 \cos \left(\theta_{a}\right) \sin \left(\theta_{a}\right) \frac{\left|\Psi_{0}\right\rangle}{\sqrt{1-a}} \\
& =\cos \left(2 \theta_{a}\right) \frac{\left|\Psi_{1}\right\rangle}{\sqrt{a}}-\sin \left(2 \theta_{a}\right) \frac{\left|\Psi_{0}\right\rangle}{\sqrt{1-a}} \\
Q \frac{\left|\Psi_{0}\right\rangle}{\sqrt{1-a}} & =\sin \left(2 \theta_{a}\right) \frac{\left|\Psi_{1}\right\rangle}{\sqrt{a}}+\cos \left(2 \theta_{a}\right) \frac{\left|\Psi_{0}\right\rangle}{\sqrt{1-a}}
\end{aligned}
$$

Matrix representation of Q

- Thus, Q is a rotation matrix in the basis $\left\{\frac{1}{\sqrt{a}}\left|\Psi_{1}\right\rangle, \frac{1}{\sqrt{1-a}}\left|\Psi_{0}\right\rangle\right\}$:

$$
Q=\left(\begin{array}{cc}
\cos 2 \theta_{a} & \sin 2 \theta_{a} \\
-\sin 2 \theta_{a} & \cos 2 \theta_{a}
\end{array}\right)
$$

- It has eigenvalues $e^{2 i \theta_{a}}, e^{-2 i \theta_{a}}$ with corresponding eigenvectors

$$
\frac{1}{2}\binom{1}{i}, \frac{1}{2}\binom{1}{-i}, \text { noted }\left|\Psi_{+}\right\rangle \text {and }\left|\Psi_{-}\right\rangle
$$

Quantum amplitude amplification

- We can now write $|\Psi\rangle$ in the Q-eigenvector basis:

$$
|\Psi\rangle=\frac{-i}{2}\left(e^{i \theta_{a}}\left|\Psi_{+}\right\rangle-e^{-i \theta_{a}}\left|\Psi_{-}\right\rangle\right)
$$

and it follows that:

$$
Q^{j}|\Psi\rangle=\frac{-i}{2}\left(e^{(2 j+1) i \theta_{a}}\left|\Psi_{+}\right\rangle-e^{-(2 j+1) i \theta_{a}}\left|\Psi_{-}\right\rangle\right)
$$

- By writing it back in the original $\left\{\frac{1}{\sqrt{a}}\left|\Psi_{1}\right\rangle, \frac{1}{\sqrt{1-a}}\left|\Psi_{0}\right\rangle\right\}$ basis:

$$
Q^{j}|\Psi\rangle=\sin \left((2 j+1) \theta_{a}\right) \frac{1}{\sqrt{a}}\left|\Psi_{1}\right\rangle+\cos \left((2 j+1) \theta_{a}\right) \frac{1}{\sqrt{1-a}}\left|\Psi_{0}\right\rangle
$$

Quantum amplitude amplification

- After m applications of the operator Q, measuring the state $|\Psi\rangle$ produces a good state with probability equal to $\sin ^{2}\left((2 m+1) \theta_{a}\right)$.
- $x \mapsto \sin ^{2}\left((2 x+1) \theta_{a}\right)$ is maximized for $x=\frac{\pi}{4 \theta}-\frac{1}{2}$.
- Thus the probability is maximized for $m=\left\lfloor\pi /\left(4 \theta_{a}\right)\right\rfloor$ (when the value of a is known).
- We can show that $\sin ^{2}\left((2 m+1) \theta_{a}\right) \geq 1-a$.

Complexity of the algorithm

- We use $2 m+1$ applications of \mathcal{A} and \mathcal{A}^{\dagger}.
- Since $\theta_{a} \approx \sin \left(\theta_{a}\right)=\sqrt{a}$, we get:

$$
\begin{aligned}
2 m+1 & =2\left\lfloor\pi /\left(4 \theta_{a}\right)\right\rfloor+1 \\
& \approx 2\lfloor\pi /(4 \sqrt{a})\rfloor+1 \\
& =\mathcal{O}\left(\frac{1}{\sqrt{a}}\right)
\end{aligned}
$$

- And the success probability is $1-a \approx 1$.

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

And indeed $m=\left\lfloor\pi / 4 \theta_{a}\right\rfloor=11$.

Visual demo

Figure 2: Visualization of the Quantum amplitude amplification algorithm

And indeed $m=\left\lfloor\pi / 4 \theta_{a}\right\rfloor=11$.

Grover's algorithm

Example

$$
|\Psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle \text { and } \chi=\mathbb{1}_{x=0} . \text { Then } a=1 / N \ll 1 \text {, }
$$

$$
m=\left\lfloor\frac{\pi}{4 \theta_{a}}\right\rfloor \approx\left\lfloor\frac{\pi}{4 \sin \theta_{a}}\right\rfloor=\left\lfloor\frac{\pi \sqrt{N}}{4}\right\rfloor=\mathcal{O}(\sqrt{N})
$$

and we get the state $|0\rangle$ with probability $\sin ^{2}\left((2 m+1) \theta_{a}\right) \geq 1-a \approx 1$.

A special case

Example

$|\Psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)|x\rangle$ and $\chi=\mathbb{1}_{x=0}$. We have $a=1 / 2, \theta_{a}=\frac{\pi}{4}$. Then, $m=1$ and $\sin ^{2}\left((2 m+1) \theta_{a}\right)=\sin ^{2} \frac{3 \pi}{4}=\frac{1}{2}=a$. Amplitude amplification has no effect.

Outline

(1) Quantum amplitude amplification

- The amplitude amplification operator
- Amplitude amplification when a is not known
- Quantum de-randomization
(2) Quantum amplitude estimation
(3) Applications

Amplitude amplification when a is not known

- When a is not known, we can first estimate it using quantum amplitude estimation (see section 2) and then run the previous algorithm by replacing the exact a by its estimate.
- Another approach is to use QSearch. The intuition is the following: for $\theta \sim \mathcal{U}[0,2 \pi], \mathbb{E}\left[\sin ^{2} \theta\right]=\frac{1}{2}$. By choosing M sufficiently large, $M \theta_{a}$ is large and by picking $j \in_{U} \llbracket 1, M \rrbracket, j \theta_{a} \bmod 2 \pi$ follows a good approximation of $\mathcal{U}[0,2 \pi]$ (and so does $\left.(2 j+1) \theta_{a} \bmod 2 \pi\right)$.
- Then, the probability $\sin ^{2}\left((2 j+1) \theta_{a}\right)$ that the measurement produces a good state is in average $\frac{1}{2}$.
- Since we don't know θ_{a}, we use an exponential search space for $M=c^{l}$ by iteratively incrementing the value of l for a constant c.

The QSearch algorithm

Initialization: $l=0$.
Repeat: (while $|z\rangle$ is not a good state)

Figure 3: The QSearch algorithm

Outline

(1) Quantum amplitude amplification

- The amplitude amplification operator
- Amplitude amplification when a is not known
- Quantum de-randomization
(2) Quantum amplitude estimation
(3) Applications

Quantum de-randomization when a is known

The success probability of the Quantum Amplitude Amplification algorithm is $1-a$. It turns out we can actually find a good solution with certainty.

- $m \mapsto \sin ^{2}\left((2 m+1) \theta_{a}\right)$ is maximized for $\tilde{m}=\frac{\pi}{4 \theta}-\frac{1}{2}$.
- If \tilde{m} is an integer, $\sin ^{2}\left((2 \tilde{m}+1) \theta_{a}\right)=1$.
- Else we use $m=\lceil\tilde{m}\rceil=\left\lfloor\pi /\left(4 \theta_{a}\right)\right\rfloor$ iterations, which is slightly too much.

The de-randomization approach is the following:

- Apply Q only $\lfloor\tilde{m}\rfloor$ times. The resulting state is:

$$
\sin \left((2\lfloor\tilde{m}\rfloor+1) \theta_{a}\right) \frac{1}{\sqrt{a}}\left|\Psi_{1}\right\rangle+\cos \left((2\lfloor\tilde{m}\rfloor+1) \theta_{a}\right) \frac{1}{\sqrt{1-a}}\left|\Psi_{0}\right\rangle
$$

- We further define $Q^{\prime}(\phi, \varphi)=-\mathcal{A} S_{0}(\phi) \mathcal{A}^{\dagger} S_{\chi}(\varphi)$

$$
\text { where }\left\{\begin{array}{l}
S_{0}(\phi)=e^{i \phi}|0\rangle\langle 0|+|1\rangle\langle 1| \\
S_{\chi}(\varphi)=\frac{e^{i \varphi}}{\sqrt{a}}\left|\Psi_{1}\right\rangle\left\langle\Psi_{1}\right|+\frac{1}{\sqrt{1-a}}\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|
\end{array}\right.
$$

Quantum de-randomization when a is known

- $Q=Q^{\prime}(\phi=\pi, \varphi=\pi)$
- By applying one final $Q^{\prime}(\phi, \varphi)$, we obtain:

$$
\star\left|\Psi_{1}\right\rangle+\left(e^{i \varphi}\left(1-e^{i \phi}\right) \sqrt{a} \sin \left((2\lfloor\tilde{m}\rfloor+1) \theta_{a}\right)-\left(\left(1-e^{i \phi}\right) a+e^{i \phi}\right)\right.
$$

$$
\left.\frac{1}{\sqrt{1-a}} \cos \left((2\lfloor\tilde{m}\rfloor+1) \theta_{a}\right)\right)\left|\Psi_{0}\right\rangle
$$

- We can choose ϕ and φ so that the coefficient in front of $\left|\Psi_{0}\right\rangle=0$:

$$
\begin{aligned}
\Longleftrightarrow \cot \left((2\lfloor\tilde{m}\rfloor+1) \theta_{a}\right) & =e^{i \varphi} 2 \sqrt{a(1-a)} \frac{1-e^{i \phi}}{2\left(\left(1-e^{i \phi}\right) a+e^{i \phi}\right)} \\
& =e^{i \varphi} \sin \left(2 \theta_{a}\right)(2 \underbrace{a}_{=1-\cos \left(2 \theta_{a}\right)}+\frac{2 e^{i \phi}}{1-e^{i \phi}})^{-1} \\
& =e^{i \varphi} \sin \left(2 \theta_{a}\right)(-\cos \left(2 \theta_{a}\right)+\underbrace{\frac{1+e^{i \phi}}{1-e^{i \phi}}}_{=i \cot (\phi / 2)})^{-1}
\end{aligned}
$$

Outline

(1) Quantum amplitude amplification

- The amplitude amplification operator
- Amplitude amplification when a is not known
- Quantum de-randomization
(2) Quantum amplitude estimation
(3) Applications

Quantum amplitude estimation

- Amplitude amplification: find $x \in X$ such that $\chi(x)=1$.
- Amplitude estimation: estimate $a=\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle$.
- By $a=\sin ^{2}\left(\theta_{a}\right)$, an estimate for a translates into an estimate for θ_{a}.
- The eigenvalues of Q are $\lambda_{+}=e^{2 i \theta_{a}}$ and $\lambda_{-}=e^{-2 i \theta_{a}}$, so we can instead estimate one of these eigenvalues.

Quantum amplitude estimation

- Let us define the operator

$$
\Lambda_{M}(Q):|j\rangle|y\rangle \mapsto|j\rangle Q^{j}|y\rangle
$$

so that e.g:

$$
\Lambda_{M}(Q)|j\rangle\left|\Psi_{+}\right\rangle=e^{2 i \theta_{a} j}|j\rangle\left|\Psi_{+}\right\rangle
$$

- We recall the quantum Fourier transform (for $x \in\{0, \ldots, M-1\}$):

$$
F_{M}:|x\rangle \mapsto \frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} e^{2 \pi i x y / M}|y\rangle
$$

- And we define (for a real $0 \leq \omega<1$):

$$
\left|S_{M}(\omega)\right\rangle=\frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} e^{2 \pi i \omega y}|y\rangle
$$

so that, for $x \in\{0, \ldots, M-1\}:\left|S_{M}(x / M)\right\rangle=F_{M}|x\rangle$.

Quantum circuit for amplitude estimation

$\left(F_{M}^{-1} \otimes I\right)\left(\Lambda_{M}(Q)\right)\left(F_{M} \otimes I\right)$ applied on the state $|0\rangle \otimes \mathcal{A}|0\rangle$

(If M is a power of 2 , we can replace the Quantum Fourier transforms by Hadamard gates)

Proof of correctness

The quantum circuit corresponds to the unitary transformation $\left(F_{M}^{-1} \otimes I\right)\left(\Lambda_{M}(Q)\right)\left(F_{M} \otimes I\right)$ applied on the state $|0\rangle \otimes \mathcal{A}|0\rangle$, with

$$
\mathcal{A}|0\rangle=-\frac{i}{\sqrt{2}}\left(e^{i \theta_{a}}\left|\Psi_{+}\right\rangle-e^{-i \theta_{a}}\left|\Psi_{-}\right\rangle\right)
$$

By applying $F_{M} \otimes I$:

$$
\frac{1}{\sqrt{2 M}} \sum_{j=0}^{M-1}|j\rangle \otimes\left(e^{i \theta_{a}}\left|\Psi_{+}\right\rangle-e^{-i \theta_{a}}\left|\Psi_{-}\right\rangle\right)
$$

After applying $\Lambda_{M}(Q)$:

$$
\frac{e^{i \theta_{a}}}{\sqrt{2}}\left|S_{M}\left(\theta_{a} / \pi\right)\right\rangle \otimes\left|\Psi_{+}\right\rangle-\frac{e^{-i \theta_{a}}}{\sqrt{2}}\left|S_{M}\left(1-\theta_{a} / \pi\right)\right\rangle \otimes\left|\Psi_{-}\right\rangle
$$

Proof of correctness

- Finally, after $F_{M}^{-1} \otimes I$, we have:

$$
\frac{e^{i \theta_{a}}}{\sqrt{2}} F_{M}^{-1}\left|S_{M}\left(\theta_{a} / \pi\right)\right\rangle \otimes\left|\Psi_{+}\right\rangle-\frac{e^{-i \theta_{a}}}{\sqrt{2}} F_{M}^{-1}\left|S_{M}\left(1-\theta_{a} / \pi\right)\right\rangle \otimes\left|\Psi_{-}\right\rangle
$$

- By tracing out the second register in the eigenvector basis $\left\{\left|\Psi_{+}\right\rangle,\left|\Psi_{-}\right\rangle\right\}$, we obtain a $\frac{1}{2}-\frac{1}{2}$ mixture of $F_{M}^{-1}\left|S_{M}\left(\theta_{a} / \pi\right)\right\rangle$ and $F_{M}^{-1}\left|S_{M}\left(1-\theta_{a} / \pi\right)\right\rangle$.
- By symmetry $\left(\right.$ since $\left.\sin ^{2}\left(\pi \frac{y}{M}\right)=\sin ^{2}\left(\pi\left(1-\frac{y}{M}\right)\right)\right)$, we can assume the measured $|y\rangle$ is the result of measuring $F_{M}^{-1}\left|S_{M}\left(\theta_{a} / \pi\right)\right\rangle$.
- We thus have $\tilde{\theta_{a}}=\pi \frac{y}{M}$ is a good estimate of θ_{a} (see next slide).

Bounding the error of the estimate $(1 / 6)$
$\frac{1}{M} F_{M}^{-1}\left|S_{M}(\omega)\right\rangle$ is a good estimate of ω. Indeed, if $\omega=x / M$ for some $0 \leq x<M$, then $F_{M}^{-1}\left|S_{M}(x / M)\right\rangle=|x\rangle$. Otherwise:

Theorem
Let X be the r.v. corresponding to the result of measuring $F_{M}^{-1}\left|S_{M}(\omega)\right\rangle$. Then:

$$
\mathbb{P}\left(\left|\frac{1}{M} X-\omega\right| \leq \frac{1}{M}\right) \geq \frac{8}{\pi^{2}} \approx 0.81
$$

Lemma
Letting $\Delta=\left|\frac{1}{M} x-\omega\right|$ for some $x \in\{0, \ldots, M-1\}$, we have:

$$
\mathbb{P}[X=x]=\frac{\sin ^{2}(M \Delta \pi)}{M^{2} \sin ^{2}(\Delta \pi)}
$$

Bounding the error of the estimate $(2 / 6)$

Proof of the Lemma.

$$
\begin{aligned}
\mathbb{P}[X=x] & \left.=\left|\langle x| F_{M}^{-1}\right| S_{M}(\omega)\right\rangle\left.\right|^{2} \\
& =\mid\left.\left(F_{M}|x\rangle\right)^{\dagger}\left|S_{M}(\omega)\right\rangle\right|^{2} \\
& =\left|\left\langle S_{M}(x / M) \mid S_{M}(\omega)\right\rangle\right|^{2} \\
& =\left|\left(\frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} e^{2 \pi i x / M y}\langle y|\right)\left(\frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} e^{2 \pi i \omega y}|y\rangle\right)\right|^{2} \\
& =\frac{1}{M^{2}}\left|\sum_{y=0}^{M-1} e^{2 \pi i \Delta y}\right|^{2}=\frac{\sin ^{2}(M \Delta \pi)}{M^{2} \sin ^{2}(\Delta \pi)}
\end{aligned}
$$

Bounding the error of the estimate $(3 / 6)$

Proof of the Theorem.

$$
\begin{aligned}
\mathbb{P}[d(X / M, \omega) \leq 1 / M] & =\mathbb{P}[X=\lfloor M \omega\rfloor]+\mathbb{P}[X=\lceil M \omega\rceil] \\
& =\frac{\sin ^{2}(M \Delta \pi)}{M^{2} \sin ^{2}(\Delta \pi)}+\frac{\sin ^{2}\left(M\left(\frac{1}{M}-\Delta\right) \pi\right)}{M^{2} \sin ^{2}\left(\left(\frac{1}{M}-\Delta\right) \pi\right)} \\
& \geq \frac{8}{\pi^{2}}
\end{aligned}
$$

Since the minimum of this expression is reached at $\Delta=1 /(2 M)$.

Bounding the error of the estimate $(4 / 6)$

A bounding error on $\tilde{\theta_{a}}$ translates into a bound on \tilde{a}.
Lemma
Let $a=\sin ^{2}\left(\theta_{a}\right)$ and $\tilde{a}=\sin ^{2}\left(\tilde{\theta_{a}}\right)$ with $0 \leq \theta_{a}, \tilde{\theta}_{a} \leq \frac{\pi}{2}$. Then:

$$
\left|\tilde{\theta}_{a}-\theta_{a}\right| \leq \epsilon \Longrightarrow|\tilde{a}-a| \leq 2 \epsilon \sqrt{a(1-a)}+\epsilon^{2}
$$

Bounding the error of the estimate $(5 / 6)$
A bounding error on $\tilde{\theta_{a}}$ translates into a bound on \tilde{a}.

Proof.

$$
\begin{aligned}
\tilde{a}-a= & \sin ^{2}\left(\tilde{\theta_{a}}\right)-\sin ^{2}\left(\theta_{a}\right) \leq \sin ^{2}\left(\theta_{a}+\epsilon\right)-\sin ^{2}\left(\theta_{a}\right) \\
= & \left(\sin \left(\theta_{a}\right) \cos (\epsilon)+\sin (\epsilon) \cos \left(\theta_{a}\right)\right)^{2}-\sin ^{2}\left(\theta_{a}\right) \\
= & \sin ^{2}\left(\theta_{a}\right) \cos (\epsilon)+\sin ^{2}(\epsilon) \cos ^{2}\left(\theta_{a}\right)+2 \cos \left(\theta_{a}\right) \sin \left(\theta_{a}\right) \cos (\epsilon) \sin (\epsilon) \\
& -\sin ^{2}\left(\theta_{a}\right) \\
= & \sin ^{2}(\epsilon)\left(\cos ^{2}\left(\theta_{a}\right)-\sin ^{2}\left(\theta_{a}\right)\right)+\sqrt{a(1-a)} \sin ^{2}(\epsilon) \\
= & \sqrt{a(1-a)} \sin (2 \epsilon)+(1-2 a) \sin ^{2}(\epsilon) \\
\leq & 2 \epsilon \sqrt{a(1-a)}+\epsilon^{2}
\end{aligned}
$$

Same for $a-\tilde{a}$.

Bounding the error of the estimate $(6 / 6)$

Combining those results, the Amplitude Estimation algorithm outputs $\tilde{\theta_{a}}$ such that

$$
\begin{aligned}
& \left|\tilde{\theta_{a}} / \pi-\theta_{a} / \pi\right| \leq \frac{1}{M} \\
& \Longleftrightarrow\left|\tilde{\theta}_{a}-\theta_{a}\right| \leq \frac{\pi}{M}
\end{aligned}
$$

with probability greater than $8 / \pi^{2}$.
Thus, by setting $\epsilon=\frac{\pi}{M}$:

$$
|\tilde{a}-a| \leq 2 \pi \frac{\sqrt{a(1-a)}}{M}+\frac{\pi^{2}}{M^{2}}
$$

Outline

(1) Quantum amplitude amplification

- The amplitude amplification operator
- Amplitude amplification when a is not known
- Quantum de-randomization
(2) Quantum amplitude estimation
(3) Applications

1. Application to counting

- The amplitude estimation algorithm can be used for counting the number of good elements $t=\mid\{x \in X$ s.t. $\chi(x)=1\} \mid$.
- By choosing $\mathcal{A}=F_{N}$ the Quantum Fourier Transform:

$$
F_{N}:|x\rangle \mapsto \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} e^{2 \pi i x y / M}|y\rangle
$$

- we have:

$$
\mathcal{A}|0\rangle=\frac{1}{\sqrt{N}} \sum_{y=0}^{N-1}|y\rangle=\underbrace{\frac{1}{\sqrt{N}} \sum_{y: \chi(y)=1}|y\rangle}_{=\left|\Psi_{1}\right\rangle}+\underbrace{\frac{1}{\sqrt{N}} \sum_{y: \chi(y)=0}|y\rangle}_{=\left|\Psi_{0}\right\rangle}
$$

Thus, $a=\left\langle\Psi_{1} \mid \Psi_{1}\right\rangle=\frac{1}{N}$, and so $t=a \times N$.

2. Application to Monte Carlo sampling

- Let X be a random variable taking values $\{0, \ldots, N\}$ with probability p_{i}. We want to compute $\mathbb{E}[f(X)]$.
- Using Monte Carlo sampling, with M evaluations of f, we get:

$$
\frac{1}{M} \sum_{k=0}^{M} f\left(X_{k}\right) \approx \mathbb{E}[f(X)] \pm \frac{C}{\sqrt{M}}
$$

- Quantum approach: define

$$
|\Psi\rangle=\sum_{i=0}^{N-1} \sqrt{p_{i}}|i\rangle
$$

and the operator

$$
F:|i\rangle \otimes|0\rangle \mapsto|i\rangle \otimes(\sqrt{1-f(i)}|0\rangle+\sqrt{f(i)}|1\rangle)
$$

Then:

$$
F|\Psi\rangle \otimes|0\rangle=\sum_{i=0}^{N-1} \sqrt{1-f(i)} \sqrt{p_{i}}|i\rangle \otimes|0\rangle+\sqrt{f(i)} \sqrt{p_{i}}|i\rangle \otimes|1\rangle
$$

2. Application to Monte Carlo sampling

Using amplitude estimation, we estimate the probability to measure $|1\rangle$ in the last Qbit: $\tilde{a}=\sum_{i=0}^{N-1} p_{i} f(i)=\mathbb{E}[f(X)]$, and using M evaluations of f :

$$
|\tilde{a}-a| \leq 2 \pi \frac{\sqrt{a(a-a)}}{M}+\frac{\pi^{2}}{M^{2}}
$$

with a convergence rate of $\mathcal{O}\left(\frac{1}{M}\right)$ to be compared to the classical $\mathcal{O}\left(\frac{1}{\sqrt{M}}\right)$ rate.

3. Application to Quantum Risk Analysis

- Quantum Risk Analysis [Woerner and Egger, 2018] (IBM Research Zurich):
In quantitative finance, VaR (Value at Risk) and CVaR (Conditional Value at Risk) are typically estimated using Monte Carlo sampling of the relevant probability distribution.
- For a confidence value $\alpha \in[0,1], \operatorname{VaR}_{\alpha}(X)$ is the smallest l such that $\mathbb{P}[X \leq l] \geq(1-\alpha)$.
- By defining $f_{l}(x)=1$ if $\mathbb{1}_{x \leq l}$, we thus want to approximate $\mathbb{P}[X \leq l]=\mathbb{E}\left[f_{l}(X)\right]$ of a random variable X taking values $\{0, \ldots, N\}$ with probability p_{i}.

Conclusion

- Quadratic speedup: this speedup is in fact the best we can attain [Bennett et al., 1997].
- Even if amplitude amplification and estimation doesn't solve NP-complete problems in polynomial time, we can apply it to more than just search problems, such as Monte Carlo sampling with a non-negligible speedup.

References

雷 Bennett, C. H., Bernstein, E., Brassard, G., and Vazirani, U. (1997). Strengths and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510-1523.

嗇 Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002).
Quantum amplitude amplification and estimation.
Contemporary Mathematics, 305:53-74.
EGrover, L. K. (1996).
A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212-219. ACM.
Woerner, S. and Egger, D. J. (2018).
Quantum risk analysis.
arXiv preprint arXiv:1806.06893.

