
EPFL Machine Learning - Project 2
Road Segmentation

Alexandre CARLIER - Félix SCHALLER - Yubo XIE

Abstract—In this project we implement an encoder-decoder
convolutional neural network to segment roads in a dataset of
aerial images, resulting in significant improvement compared
to logistic regression and patch-wise CNN, and reaching an F
score of 0.94.

I. INTRODUCTION

In this project, we are training a classifier to segment roads
in aerial images from Google Maps, given the ground-truth
images, i.e. the pixel-level labeled images (1 corresponding
to a road, 0 to background).

The train dataset contains 100 labeled images of 400×400
pixels. After the training, we run a prediction on 50 test
images of 608× 608 pixels. The predicted images are then
cropped in patches of 16 × 16 pixels and transformed to a
csv submission file containing the predicted output (1 for
a road, 0 for background) for each patch.

This report is structured as follows. Section II describes
the architecture of our encoder-decoder CNN model. Sec-
tion III details the procedure we use to further refine
the predictions of the model. We include the experimental
settings, baselines, and final results in Section IV. Section V
concludes the report.

II. ENCODER-DECODER CNN

Here we present an encoder-decoder convolutional neural
network architecture that is similar to the models proposed
in [7], [1]. The network consists of two parts, a convolutional
network and a deconvolutional network. Figure 1 gives
an illustration of our model. The convolutional network
extracts high-level features from the input image, and the
deconvolutional network builds a segmentation based on the
extracted features. The output of the whole encoder-decoder
network is then a probability map with the same size as the
input image, which indicates the probability of each pixel
belonging to “road”.

In order to down-sample the layers by a factor of 2 once
in a while, we use a convolutional layer with stride 2, instead
of a max pooling layer. Similarly, we use a deconvolutional
layer with stride 2 to up-sample the layers by a factor of 2,
allowing us to reconstruct the size of the original image.

However, the predictions of the decoder part of the model
can be rather coarse. Intuitively, we want to combine those
predictions with fine details from the low-level layers. To do
this, we fuse information from previous layers to specific
layers in the deconvolutional network [5], as indicated by
the directed lines in Figure 1.

The specifications of our model are detailed in Table I.
We use ReLU as the activation function. We use a padding
scheme such that the output size is dinput size/stridee.

Table I
SPECIFICATIONS OF THE ENCODER-DECODER CNN

Layer Kernel size Stride Output size
input − − 320× 320× 3

conv_1_1 3× 3 1 320× 320× 64
conv_1_2 3× 3 2 160× 160× 64
conv_2_1 3× 3 1 160× 160× 128
conv_2_2 3× 3 2 80× 80× 128
conv_3_1 3× 3 1 80× 80× 256
conv_3_2 3× 3 1 80× 80× 256
conv_3_3 3× 3 2 40× 40× 256
conv_4_1 3× 3 1 40× 40× 512
conv_4_2 3× 3 1 40× 40× 512
conv_4_3 3× 3 2 20× 20× 512
conv_5_1 3× 3 1 20× 20× 512
conv_5_2 3× 3 1 20× 20× 512
conv_5_3 3× 3 2 10× 10× 512
conv_6_1 3× 3 1 10× 10× 512
conv_6_2 3× 3 1 10× 10× 512
conv_6_3 3× 3 2 5× 5× 512
deconv_6_3 3× 3 2 10× 10× 512
deconv_6_2 3× 3 1 10× 10× 512
deconv_6_1 3× 3 1 10× 10× 512
deconv_5_3 3× 3 2 20× 20× 512
deconv_5_2 3× 3 1 20× 20× 512
deconv_5_1 3× 3 1 20× 20× 512
deconv_4_3 3× 3 2 40× 40× 512
deconv_4_2 3× 3 1 40× 40× 512
deconv_4_1 3× 3 1 40× 40× 256
deconv_3_3 3× 3 2 80× 80× 256
deconv_3_2 3× 3 1 80× 80× 256
deconv_3_1 3× 3 1 80× 80× 128
deconv_2_2 3× 3 2 160× 160× 128
deconv_2_1 3× 3 1 160× 160× 64
deconv_1_2 3× 3 2 320× 320× 64
deconv_1_1 3× 3 1 320× 320× 64
output 1× 1 1 320× 320× 2

III. POST-PROCESSING

With our current encoder-decoder CNN model, the pre-
dictions may have discontinuity points or holes in the roads,
as Figure 2 shows.

To address this problem, we adopt a post-processing
procedure [6] which enables to refine the predictions given
by the encoder-decoder CNN. Let f be the network trained
to output the predictions of the input images X , which we
denote by Yp. We build another network fp that takes the
same functional form as f , and train it using Yp as input
and the groundtruth images as labels. The output of fp is
then used as our final predictions.



Convolution network Deconvolution network

Figure 1. An illustration of our model. Layers drawn in red are convolutional layers with stride 2, which down-sample the previous layers. Layers drawn
in blue are deconvolutional layers with stride 2, which up-sample the previous layers. Directed lines indicate fusion of layers.

Figure 2. A prediction from our encoder-decoder CNN model. We can
observe the presence of holes in the top-right road.

IV. EVALUATION

In this section, we elaborate on the experiment settings,
including how we augment the data and train the model. We
then evaluate the performance of our model as well as the
baselines, followed by some analysis and discussion.

A. Data Augmentation

The original training dataset contains 100 aerial images.
For each of these images, we apply a rotation of 45, 90,
−45, −90 degrees respectively, which aims to increase the
number of examples with diagonal roads in the dataset, and
crop out the central part to obtain four new aerial images of
size 320×320. Besides, for this original image, we also crop
out a region of size 320 × 320 at each of the four corners.
Again, we rescale the original image to 320 × 320 to get
another new image. Thus, for each training image, we can
generate nine new images, resulting in an augmented dataset
of 900 aerial images. We then split our augmented data into
a training set (90%, i.e. 810 images) and a testing set (10%,
i.e. 90 images).

B. Baselines

For the baselines, the problem is framed as a binary
classification task. We extract patches of k × k pixels from
the training images. For each patch, the label can be obtained

by looking at the corresponding groundtruth image, and
we can perform a binary classification to determine if it
corresponds to a road or to background. The hyper-parameter
k is crucial since it should optimize the following trade-off:
a larger k means that our prediction will be more accurate
since the model has more information from the pixels to
make its prediction; a smaller k enables a more fine-grained
grid of patches.

Logistic Regression: For each patch, we compute the
mean and variance values for each of the three channels,
thus obtaining a feature vector with size 6. We then train a
simple logistic regression model on the feature vectors.

Naïve CNN: We train a naïve convolutional neural
network directly on the patches. The specifications of the
network are detailed in Table II. Note that the input size,
depending on the value of patch size k, is not fixed at 16×16.

Table II
SPECIFICATIONS OF THE NAÏVE CNN

Layer Kernel size Stride Output size
input − − 16× 16× 3
conv_1 5× 5 1 16× 16× 32
pool_1 2× 2 2 8× 8× 32
conv_2 5× 5 1 8× 8× 64
pool_2 2× 2 2 4× 4× 64
fc_3 4× 4 − 1× 1× 512
output 1× 1 − 1× 1× 2

C. Training
Logistic Regression: We train the logistic regression

using an inverse regularization strength of 105, Liblinear
solver and a balanced class-weight (so that classes with a
lower number of occurrences are fitted equally).

Naïve CNN: We train the CNN with 50 epochs, an
initial learning rate of 0.01 (that decays exponentially),
simple momentum for the optimization and a regularization
coefficient of 5× 10−4. For this model, the patch-size must
be both a divisor of the size of the image and a multiple of
4 (since the input image is pooled twice during the forward
pass).



Encoder-decoder CNN: We apply batch normaliza-
tion [4] to each of the convolutional and deconvolutional
layers, to alleviate the problem of internal covariate shift.
We add three drop out layers [3] with keep probability 0.5
to the network, after deconv_4_1, deconv_3_1, and
deconv_2_1, respectively. To train the model, we use
stochastic gradient descent with learning rate of 5.0 and
batch size of 5. The network is trained for 100 epochs on
the training images, and 10 epochs for the post-processing
procedure. It roughly takes three hours to finish the whole
training procedure on an NVIDIA GTX 1080 graphics card.
Figure 3 shows the evolution of the cross-entropy loss during
the training procedure. We can observe that after 40 epochs,
the loss (0.070346) is almost the same as the final loss
(0.06267).

Figure 3. Cross-entropy loss value obtained during the training of the
encoder-decoder CNN model, with respect to the number of epochs.

D. Results

To evaluate the models, the predicted images are cropped
into patches of 16 × 16 pixels, in order to compare scores
on a same basis.

First of all, to see the impact of the patch size on the
performance of the baselines, we train a logistic regression
model using several patch sizes. The result is shown in
Figure 4. In particular, we get better results with a patch
size of 8 or 20 in the case of logistic regression. Therefore,
in addition to a patch size of 16, we also include models
with patch size 8 and 20 in the final comparison.

We train each model on the training set (90% of the
augmented data) and compute the accuracy, precision, recall
and F score on the validation set (10% of the data), which
are listed in Table III. As the training of our encoder-
decoder CNN model is long, we compute the score only
once. In particular, we do not adopt a cross-validation
procedure to get this score and we thus have no information
about its variability. The logistic regression and naïve CNN
models with patch size k are denoted by LRk and CNNk

Figure 4. F score given by a logistic regression model trained on the
training set, with respect to the patch size (divisors of 320, the size of the
input image). We observe two peaks at patch size = 8 and 20.

Input LR CNN EDCNN GT

Figure 5. A visualization of our segmentation models applied on three im-
ages. From left to right, the images correspond to: input, logistic regression,
naïve CNN, encoder-decoder CNN, ground-truth (if available). From top
to bottom, the input images are: test_5.png, satImage_001.png,
satImage_005.png

respectively. EDCNN is our encoder-decoder CNN model.
We can see that our model outperforms both of the two
baselines. A comparison of the predictions given by all the
models are shown in Figure 5.

Table III
EVALUATION RESULTS

Model Accuracy Precision Recall F score
LR16 0.5919 0.3442 0.6859 0.4585
LR8 0.5522 0.3348 0.7888 0.4701

LR20 0.5589 0.3394 0.7940 0.4755
CNN8 0.7874 0.5463 0.9186 0.6852
CNN20 0.8126 0.5854 0.8772 0.7022
CNN16 0.8598 0.6703 0.8726 0.7583
EDCNN 0.9654 0.9469 0.9345 0.9406

To get a general sense of the various features extracted
by the encoder-decoder CNN, we give an illustration of the
intermediate layers (both convolutional and deconvolutional)
in Figure 6.



input
320× 320

conv_1_2
160× 160

conv_2_2
80× 80

conv_3_3
40× 40

conv_4_3
20× 20

conv_5_3
10× 10

conv_6_3
5× 5

output
320× 320

deconv_1_1
320× 320

deconv_2_1
160× 160

deconv_3_1
80× 80

deconv_4_1
40× 40

deconv_5_1
20× 20

deconv_6_1
10× 10

Figure 6. An illustration of the intermediate layers in the network when predicting the segmentation a single aerial image. For each of the convolutional
and deconvolutional layers, we select a slice and show it as an image here.

V. CONCLUSION

In this project, we implement an encoder-decoder model
that we train and test on aerial images, obtaining an F score
of 0.94 and observing significant improvements compared
to simples baselines. Further improvements including atrous
convolutions or pyramid pooling modules could be added
to our encoder-decoder structure to reach state of the art
performance (e.g. DeepLab v3 [2]) but seem out of reach in
the context of this course.

REFERENCES

[1] V. Badrinarayanan, A. Handa, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling. arXiv preprint arXiv:1505.07293, 2015.

[2] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmentation.
arXiv preprint arXiv:1706.05587, 2017.

[3] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R. R. Salakhutdinov. Improving neural networks by
preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In
International Conference on Machine Learning, pages 448–
456, 2015.

[5] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 3431–3440, 2015.

[6] V. Mnih and G. E. Hinton. Learning to detect roads in high-
resolution aerial images. In European Conference on Computer
Vision, pages 210–223. Springer, 2010.

[7] H. Noh, S. Hong, and B. Han. Learning deconvolution
network for semantic segmentation. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1520–1528, 2015.


	Introduction
	Encoder-Decoder CNN
	Post-Processing
	Evaluation
	Data Augmentation
	Baselines
	Training
	Results

	Conclusion
	References

